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A solution is given to the problem of the distribution of the density of wetting in a cylindrical 
randomly packed column for the boundary condition given by Eq. (2). The generality of the so
lution is limited by the initial condition which must be axially symmetric and thus preserves the 
twodimensional character of the problem. The solution is then given explicitly for several 
selected types of initial wetting and the computed curves are compared with the experimentally 
determined distribution in a 291 mm column packed with four different packings. The distri
butors used in experiments are: the central "point" source and the disc distributor. A very good 
agreement is found in both cases. 

In the preceding paper of this series 1 solution has been given to the so-called diffusion 
equation, which may be written in dimensionless cylindrical form as 

02j 1 oj oj 
- +--=-, 
or2 r or oz (1) 

for two important types of initial wetting of the packing: the uniform and the wall 
wetting. The necessary boundary condition has been proposed earlier in the dimen
sionless form as 

- ~ = B(J - CW), r = 1 
or 

(2) 

and verified 2 on an extensive set of experimental data in a wide range of liquid flow 
rates, for several liquids and packings. One can thus expect that solution to Eq. (1) 
with the boundary condition (2) should be a useful tool in description of the processes 
on random packings, as has been shown already e.g. in a paper3 dealing with the 
effect of liquid distribution on liquid hold-up in packed columns. The aim of this 
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paper is to obtain a solution to Eq. (1) for an axially symmetric but otherwise general 
condition, i.e. for an arbitrary type of a distributor preserving the axial symmetry, 
and to verify selected types experimentally. 

THEORETICAL 

One can easily find that the solution to the cylindrical diffusion Eq. (1) satisfying 
the axial symmetry condition has the form 

f = IAn JO(qnr) exp (-q~z). (3) 
n 

If the boundary condition, Eq. (2), is to be satisfied the eigenvalue qn must satisfy 
the following equation 

(4) 

It remains now to expand the initial condition as a series of the Bessel functions and 
from comparison with the solution (3) at z = 0 to express the so far unknown 
coefficients An. Let us suppose that the initial condition determining the distribution 
of liquid on the top of the packing is given by a function <per). Of this function we 
shall only suppose that it is symmetric (even) with respect to r and has a zero in the 
point r = 1: (p( 1) = O. Thus we search for the coefficients of 

(5) 

where qn are the roots of Eq. (4). 

To determine the coefficients of the expansion (5) one needs to evaluate the integral 
f ~ r Jo( qnr) Jo( qmr) dr, where both qn and qm are the roots of Eq. (4). This is achieved 
with the aid of the relation following from the properties of the Bessel equation and 
which can be found in the literature, e.g.4-

Making use of J~(x) = - J1(x) and substituting from Eq. (4) we get 

(7) 
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For individual An we then have 

The integral on the right hand side may be found also in standard textbooks4 

(9) 

Changing to a single Bessel function with the aid of Eq. (4) and substituting into 
Eq. (8) we obtain for An finally 

An = {2(q~/B - 2Cy/[((q~/B - 2C)2 + q~ + 4C) J~(qn)J} J: r<p(r) JO(qnr) dr . 

(10) 

The coefficient Ao can be found easily from the balance on liquid and the limiting 
form of the boundary condition (2) at z = 00 

Ao = C/(l + C). (11) 

Eqs (3), (10) and (11) were used to solve the distribution of the density of wetting 
in a cylindrical column wetted by a disc distributor of the radius rl. The mathematic
al formulation of such initial condition is then: 1 = l/ri for 0 ~ r ~ r1 ; 1 = 0 for 
r 1 < r ~ 1. An explicit form of the solution is given in Table I together with certain 
additional properties of the distribution such as the gradient of the density of wetting 
in the proximity of the wall, i.e.: (of/or)'=l' and the magnitude of the wall flow W 
From the solution for the disc distributor one can easily change to that for a central 
point source by the limit r1 ~ O. The mean density of wetting, 10' appearing in the 
dimensional form of the solution is replaced in this case by Q/(nR2). This solution 
is also given in the Table. The third solution tabulated in Table I is that for an annular 
distributor of the radii r 1, r2. The initial condition is then: 1 = l/(r~ - ri) for 
r 1 ~ r ~ 1'2; 1 = 0 for 0 ~ I' < r 1 and r2 < r ~ 1. The solution can be obtained 
again from Eqs (3), (10) and (11), or as a difference of solutions for two discs of the 
radii r 1 and r2 which is admissible in view of the linearity of the problem. Before 
substraction, however, both solutions must be multiplied by appropriate weights 
given by the area of the distributor in order to preserve the overall balance of liquid. 

From the solution for the annulus one can easily change in the limit r 2 - > r 1 to 
the solution for a circular distributor of the radius r 1 • The mean density of wetting, 
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TABLE I 

Solutions under Selected Initial Conditions 

Central point source 

CIJ 
.?I 

/= "0 

r= 0 

0</'~1 

2 g r/dr = 1, z = 0 

Disc distributor 

/= (1 / 1'1)2, 0 ~ r ~ /'1 

g / = 0,1'1 < I' ~ 1 

~ 
() 

I 
~ 

~ 

C [(q~ /B) - 2C]2 JO(qnl') exp (- q~z) 

/= l+c + ~ n(q-~/B) - 2C]2+ q~ + 4C} J6(qn) 

q~[(q~/B) - 2C] exp (- q~z) 
(0/ /01'),= 1 = - ~ {r(q~/ B - 2C]2 + q~ + 4C} Jo(qn) 

1 2[(q~/B) - 2C] exp (- q~z) 
W= l + C - ~ {[(q~/B) - 2cf + q~ + 4C} Jo(qn) 

__ ~ + 1.-" ~[(q~/.zv - 2C]2 Jo(qn/')_~I(qn/'~) exp (-q~.:!. 
/ - 1 + C 1'1 ~ {[(q~/B) - 2C]2 + q~ + 4C} qn J6(qn) 

1 2qn[(q~/B) - 2C] J 1 (qnrl) exp( - q~ z) 
(01 / ° 1'),= 1 = - -; I -{[(ti2/ B ) - 2cf2+ q~ + 4C} Jo(qn) 

I n n 

1 1 4[(q~ ! B) - 2C]J I (q,h) exp (- q~z) 
W = 1 + C - -:~ ~ (Tcq~/ B) - 2C]2 +q~ +4Crq~~qJ 

N 

~ 
00 

r/1 
~ 
~, 
.X" 

~ 
o 
~ 



~ Annular distributor 

J 1 
1= Z--:z, r1 ;:::; r ~ I"z 

r2 - 11 
g 
~ g 1 = 0)'1 0 ;:::; I" < 1"1 

~ " 
p 

~ 

I"z < 1";:::; 1 

Circular distributor 

m 

I=!! 0 

""0 

1"= 1"1 

0;:::; r < r1 

1"1 < 1" ;:::; 1 

2 f~ rldr == 1, z = 0 

C 1 2 [(q~ /B) - 2C]z Jo(qnl") [r2 J 1 (qnl"z) - 1"1 J 1 (qnr l)] exp (- q~z) 
1 = 1 + C + ;.r=-:f ~ {[(q~/B) - 2C)2 + q~ + 4C} qn J6(qn) 

c ' e 1 2qn[(q~/B) - 2C] [1"2 J1(qnI"2) - 1"1 J1(qn r l)] ex? (- q~z) 
(ol ;rY)r= 1 = - ;2- ~--;:2 I {[(qZ / B) - 2C]2 + q~ + 4C} JO(qn) 

2 1 n n 

W = _ 1 __ _ 1 _ _ I: 4[(q~/B) - 2C] frz J1(qnI"2) - ~1 J1(qn l\ )] exp (-_ ~~ 
1 + C I"~ - ri n {[(q~ /B) - 2cf + q~ + 4C} Jo(qn) 

__ ~ __ I [(q~ /B) - 2cf Jo(qnl") Jo(qnYl) exp (- q~z) 
1 -- 1 + c I n {[(q~/B) - 2C)2 + q~ + 4C} J5(qn) 

q~[(q~/ B) - 2C] Jo(qn l"l) exp (-q~z) 
(ol /or)r= 1 = - ~ {[(q~/B) _ 2C]2 + q~ + 4C} JO(qn) 

W- _ 1 __ I 2 [(q~ /B) - 2C] JO(qnl"l) exp (-q~z) 
- 1 + C n {[(q~ /B) - 2C]2 + q~ + 4C} Jo(qn) 
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10, appearing as a scaling factor of the dimensional solution must be again replaced 
by the expression Q/(rrR2

). 

The distribution curves computed for B = 6·82 and C = 3·12 (the values foundS 
typical for a packing of 25 mm Raschig rings) are shown in Fig. 1a-d for all 
four above cases. It can be seen that the transition to the equilibrium state proceeds 
much faster for the circular distributor in comparison with the central point source. 
Similarly, the transition is faster for the annular distributor in comparison with the 
disc, although for the given values of radii r1 and r2 the maximum local density of 
wetting is in both cases the same. Interesting is also a comparison of the circular 
and the annular distributor. The radii of the latter are taken so that (r1 + r2)/2 = 1/2, 
which is equal to the radius of the circular distributor. From Fig. 1 it is seen that the 
differences of the corresponding distribution curves for both distributors are no t very 
marked and diminish with increasing height of the packing. Thus being a relatively 
easy-to-realize the circular distributor may well replace the annular distributor. 

FIG. 1 

Computed Distribution Curves for Several Types of Initial Wetting, (B = 6'82, C = 3'12) 
a Central point source; b circular distributor '1 = 1/2; c disc distributor '1 = 1/ 2; d annular 

distributor'l = 3/ 8, 1'2 = 5/ 8; 1 To = 0·01; 2 0·02; 30·03; 40'04; 50'05; 60'10; 70'2; 8 roo 
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Clearly, even faster transition to the quilibrium distribution (curve 8) could have been 
achieved with a somewhat greater radius of the circular distributor, which would have 
avoided the situation apparent from Fig. Id: For r 1 = 1/2 (or even smaller) the 
central part of the column is saturated faster to a value exceeding the equilibrium 
density of wetting. ConsequentlY, a part of the liquid is later transported back across 
the whole column radius toward the wall. 

Eqs (3), (10) and (11) thus enable the s01utions of the distributions of the density 
of wetting to be found for an almost arbitrary type of initial wetting. Certain selected 
types of the distribution were verified experimentally: The disc distributor of r 1 = 1/2 
and the central point source. 

EXPERIMENTAL 

The measurements were carried out in a glass column 291 mm in inner diameter. The packings 
used were glass spheres 15 and 20 mm in diameter and porcelain Raschig rings 15 and 25 mm 
'in diameter. Water at 25°C was used in all cases. The measurements covered the range of the mean 
density of wetting (superficial velocity of liquid) between 0·0005 and 0·008 m/s. 

As a central distributor approximating the function of a central point source we used a nozzle 
20 mm in inner diameter. Further decrease of the inner diameter of the discharge opening attempt
ing a better approximation of the hypothetic point source is not practicable because of the high 

FIG. 2 

A Comparison of the Computed and Ex
perimental Profiles of the Wetting by Central 
"Point" Source, (10 = 0·00202 mis, 25 mm 
Raschig Rings) 

o h = 300 mm; CD h = 500 mm; • h = 
= 1000mm. 
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FIG. 3 

A Comparison of the Computed and Ex
perimental Profiles of the Wetting by the 
Disc Distributor, (r1 = 1/2, 10 = 0·00489 
mis, 15 mm Raschig Rings) 

o h = 300 mm; CD h = 500 mm; • h = 
= 1165 mm. 
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velocity of the jet impinging on the packing. In addition, the diameter of the nozzle is about the 
same as the characteristic dimension of the packing piece. 

As a disc distributor served a brass vessel with hollow rivets mounted in its bottom evenly 
in a 10 X 10 mm square pitch and covering the central area equal one half of the column cross
section. Th~re were 7 mm long nylon thread loops mounted in each rivet to improve the function 
of the distributor at low discharge velocities. 

The method of experimental measurement of the profiles of the density of wetting is identical 
to that described in the preceding communications. The packing rests on 13 concentric annuli and 
the time necessary for collecting a preselected volume of liquid is measured. Each measurement 
of a given depth of the packing was repeated 6 times (3 redumpings of the bed each with duplica
tion) and the primary results were averaged (arithmetic mean of the inverse values of the times 
to fill the collecting vessels). Each series of experiments (9 values of liquid flow rate) was started 
from the maximum after flooding the column by liquid. 

RESULTS AND DISCUSSION 

The experimental set-up provides up to 72 points on each profile of the density of 
wetting. Of these we selected 30 points having the width of the collecting annulus 
at least comparable6 (but in most cases greater) than the characteristic dimension 
of the packing. 

Since the distribution of the density of wetting for the selected types of initial 
distribution is strongly non-uniform it must be expected that the agreement between 
the experimental and computed profiles will be markedly affected by the choice 
of the parameter D necessary for evaluating the dimensionless height of the packing 
To. We have therefore compared the experimental profiles with the computed curves 
for such To which satisfies the condition of the minimum sum of square deviations 
from the experimental profile. For Band C we took B = 6·82 (for all packings) and 
C = 8-44 and 6·32 for spheres 15 and 20 mm in diameter, and C = 3·66 and 3·12 
for Raschig rings 15 and 25 mm in diameter. These values were reported in the pre
ceding papers. The agreement found was in all cases very good without systematic 
deviations. Typical computed curves and experimental points are shown in Fig. 2 
for 25 mm Raschig rings wetted by central "point" source. A similar situation is 
shown in Fig. 3 for 15 mm Raschig rings wetted by the disc (rl = 1/2) distributor. 
The good agreement between the experimental and predicted values of the density 
of wetting in case of the central source is somewhat surprising because the coeffi
cients D computed from the optimized values To tend to increase with fa, particularly 
on low layers of packing. This is caused by the already earlier observed flooding 
of the packing on the top where large quantities of liquid are discharged on a small 
area. The dependence of D on fa would of course deny the linearity of the problem 
and hence the validity of Eq. (1). The non-linearity of the problem, however, is 
refuted by the fact that the standard deviations found by comparing the experimental 
and predicted profiles display only a very small increase with fa in case of the spheres, 
while for 25 mm Raschig rings they tend to decrease. The increase of D with fa can 
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be explained by the observation suggesting that the flooding of the packing occurs 
immediately on the top of the packing layer which is not able to absorb all supplied 
liquid. The excess liquid spreads over the top on a larger area until its velocity de
creases below the value that can be absorbed by the packing. The central "point" 
source thus transforms into a disc distributor the radius of which depends on fo . 
For discs of small radius and larger values of To the solution differs little from that 
for the central point source which explains the good agreement of the experimental 
and theoretical profile under seemingly non-linear (judging from D) conditions. 

LIST OF SYMBOLS 

An coefficient of expansion 
B dimensionless parameter of the boundary condition (2) 

, C dimensionless parameter of the boundary condition (2) 
D coefficient of radial spreading of liquid , (L) 
dp characteristic dimension of the packing, (L) 
1 = 1'/10'/' dimensionless and dimensional, (LT- 1

), density of wetting 
10 = Q!(rtR2

) mean density of wetting, (LT- 1
) 

Ii height of bed, (L) 
Jo, .11 Bessel function of the first kind, zero and first order 

summation index 
Q amount of liquid brought into column per unit time (L3T- 1

) 

qn, qm roots of Eq. (4) 
R column diameter, (L) 
r = r'/ R, r' dimensionless and dimensional, (L) radial coordinate 
r1 = ri /R, r2 = r2 /R, r1, r2 dimensionless and dimensional, (L), radii 
To = Dill R2 dimensionless height of bed 
W = W' / Q,W' dimensionn:ss and dimensional, (L3T- 1

), wall flow 
z = Dz'/ R2,z' dimensionless and dimensional, (L), coordinate of height 
rp(r) function determining the initial distribution of liquid 
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